Data science

K-fold cross validation

The greatest headache for any machine learning engineer is the problem of overfitting. The model we trained works perfectly on the training dataset but when applied to other new dataset it fails miserably. This is because of overfitting where our classifier learns the provided dataset accurately but fails when applied on new data. One good …

K-fold cross validation Read More »

Mathematics of Principal component analysis

Principal component analysis is a method used to reduce the number of dimensions in a dataset without losing much information. It’s used in many fields such as face recognition and image compression, and is a common technique for finding patterns in data and also in the visualization of higher dimensional data. PCA is all about …

Mathematics of Principal component analysis Read More »

Understanding the Classification report through sklearn

A Classification report is used to measure the quality of predictions from a classification algorithm. How many predictions are True and how many are False. More specifically, True Positives, False Positives, True negatives and False Negatives are used to predict the metrics of a classification report as shown below. The report is copied from our previous …

Understanding the Classification report through sklearn Read More »

Understanding Support vector Machines using Python

Support Vector machines (SVM) can be used for both classification as well as regression tasks but they are mostly used in classification applications. Some of the real world applications include Face detection, Handwriting detection, Document categorisation, SPAM Filtering, image classification and protein remote homology detection. For many researchers, SVM is the first best choice for …

Understanding Support vector Machines using Python Read More »

Maths behind Polynomial regression

Polynomial regression is a process of finding a polynomial function that takes the form f( x ) = c0 + c1 x + c2 x2 ⋯ cn xn where n is the degree of the polynomial and c is a set of coefficients. Through polynomial regression we try to find an nth degree polynomial function which is the closest approximation of our data points. Below is a sample random dataset which has been regressed …

Maths behind Polynomial regression Read More »