
P.O. Box 1450
Alexandria, VA 22313 - 1450

www.uspto.gov

ELECTRONIC ACKNOWLEDGEMENT RECEIPT

APPLICATION # RECEIPT DATE / TIME ATTORNEY DOCKET #
18/478,360 09/29/2023 04:06:06 PM ET 10875-10150 US

Title of Invention
SYSTEM AND METHOD FOR DETECTING A CHANGE IN CONTEXT OF AN APPLICATION USING
SUBSECTIONS

Application Information

APPLICATION TYPE Utility - Nonprovisional Application
under 35 USC 111(a)

PATENT # -

CONFIRMATION # 7247 FILED BY Edward Van Gieson

PATENT CENTER # 62900386 FILING DATE -

CUSTOMER # 93219 FIRST NAMED
INVENTOR

Sneha Saxena

CORRESPONDENCE
ADDRESS

- AUTHORIZED BY Edward Van Gieson

Documents TOTAL DOCUMENTS: 6

DOCUMENT PAGES DESCRIPTION SIZE (KB)

10150 US - Application Data
Sheet.pdf

 8 Application Data Sheet 2174 KB

10150 US - Declaration.pdf 3 Oath or Declaration filed 242 KB

10150 US - Power of
Attorney.pdf

 3 Power of Attorney 317 KB

10150 US - Specification-
APP.TEXT.docx

 40 Application body structured text
document

57 KB

Warning: Text decorations have been removed. Bookmarks were found and have been
removed.

Page 1 of 3

10150 US - Drawings.pdf 17 Drawings-only black and white
line drawings

2500 KB

10150 US - Specification.pdf 40 Auxiliary PDF of Application 190 KB

Digest

DOCUMENT MESSAGE DIGEST(SHA-512)

10150 US - Application Data
Sheet.pdf

47BB162DB7A87A0294EBF4125060024232A8886D76BCE8B0E4
E66E006FB5076777412ADB24B1B49CE78E61D6ADEE4A61923
70C93DA7ADAB1A9B5F148CCB38575

10150 US - Declaration.pdf 379269A8D39E3BECF0447DBDB728D717D43CCD90A0A75CCD
E7DF8DE5ACA3A8865B005DA1E362A3469008E957AFD2B64A2
2CB97BEC5A0FFC0ADA0958D655994D2

10150 US - Power of
Attorney.pdf

190F0A6784467FB1839EA9B2B615ECB7CF52FE5D129BFDB86
A4C8DD5ABC716D95C590D2B9101713B600B70625A2F09C093
5FACF09D0D4374E3519D87AE42B1D6

10150 US - Specification-
APP.TEXT.docx

F883D63B5780D634DE056C020F375E63961DF2FC04682918C8
D4C1257DBF184A6D346FC1538E2D733CEA91573A3443F2F6F
77DC2B770DE089B3F034FBF7BC7BE

10150 US - Drawings.pdf 4192875D03FD98F5924A89055B3052EEAED30EF63D665A7314
56E7795977CA45E30A6926D824A2385F51F59E03C574D94292
A7BCDFE5BBE767EF099790B22CCA

10150 US - Specification.pdf 21C7F920146E7729E9C1BB8BFA635C6695BA86BBFC7D4C2D8
F8949A6458FCA83ECF0426FFA4CDF4B619FFBAC27F35DEFD
C2FD2505008D36B29E4E9AEA5EA2E6F

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized
by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as
described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for filing date (see 37 CFR 1.53(b)-(d)

Page 2 of 3

and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement
Receipt will establish the filing date of the application

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C.
371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage
submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an
international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the
International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security,
and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Page 3 of 3

P.O. Box 1450
Alexandria, VA 22313 - 1450

www.uspto.gov

ELECTRONIC PAYMENT RECEIPT

APPLICATION # RECEIPT DATE / TIME ATTORNEY DOCKET #
18/478,360 09/29/2023 04:06:06 PM ET 10875-10150 US

Title of Invention
SYSTEM AND METHOD FOR DETECTING A CHANGE IN CONTEXT OF AN APPLICATION USING
SUBSECTIONS

Application Information

APPLICATION TYPE Utility - Nonprovisional Application
under 35 USC 111(a)

PATENT # -

CONFIRMATION # 7247 FILED BY Edward Van Gieson

PATENT CENTER # 62900386 AUTHORIZED BY Edward Van Gieson

CUSTOMER # 93219 FILING DATE -

CORRESPONDENCE
ADDRESS

- FIRST NAMED
INVENTOR

Sneha Saxena

Payment Information

PAYMENT METHOD PAYMENT TRANSACTION ID PAYMENT AUTHORIZED BY
CARD / 1002 E20239SG08076200 Edward Van Gieson
PRE-AUTHORIZED ACCOUNT PRE-AUTHORIZED CATEGORY
603148 37 CFR 1.16 (National application filing, search, and examination fees)

FEE CODE DESCRIPTION ITEM PRICE($) QUANTITY ITEM TOTAL($)

1111 UTILITY PATENT APPL. SEARCH
FEE

700.00 1 700.00

1011 BASIC FILING FEE - UTILITY (PAPER
FILING ALSO REQUIRES NON-
ELECTRONIC FILING FEE UNDER
1.16(T))

320.00 1 320.00

1311 PATENT APPL. EXAMINATION FEE 800.00 1 800.00

1202 EACH CLAIM IN EXCESS OF 20 100.00 1 100.00

Page 1 of 2

TOTAL
AMOUNT:

$1,920.00

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized
by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as
described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for filing date (see 37 CFR 1.53(b)-(d)
and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement
Receipt will establish the filing date of the application

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C.
371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage
submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an
international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the
International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security,
and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Page 2 of 2

Client No. Page 1 of 40 Attorney Docket No. 10875-10150 US

SYSTEM AND METHOD FOR DETECTING A CHANGE IN CONTEXT OF AN

APPLICATION USING SUBSECTIONS

TECHNICAL FIELD

[0001] The present disclosure is related to determining a change in a page or context of

an application for use in a digital adoption platform.

BACKGROUND

[0002] A digital adoption platform (DAP) is a type of software that is layered on top of

another software, app, or website to help facilitate end user proficiency by helping to guide users

through key tasks and provide contextual information as users navigate the user interface of the

product. Users are provided with information to help familiarize them and become more

proficient. This helps to drive adoption.

[0003] For example, a DAP may generate a help tip. Background information on an

example DAP implementation is found in various sources, including U.S. Pat. No. 11,372,661

and U.S. Pat. No. 11,461,090, assigned to Whatfix Private Limited, the contents of each of which

is hereby incorporated by reference. A DAP supports content authoring modules and content

playback modules to generate, for example, smart tips as a user navigates elements of a user

interface of an underlying software application.

[0004] A DAP supports content creators creating new flows or other guided features to

enable higher adoption of client applications. Content Creators of the product can create content,

record a flow, and the content is played back the same flow as and when required when end-user

clients navigate the client application. This requires the DAP to find the visual UI elements on

the application the user is looking at (e.g., finding where the user's cursor is located on a

graphical user interface.

Client No. Page 2 of 40 Attorney Docket No. 10875-10150 US

[0005] An application may have different pages with different screen element formats.

For example, an application may generate graphical user interfaces with pages for different

purposes, such as a calendar page, a teleconference page, etc. Also, even for a visual UI for a

particular purpose (e.g., document management), there may be a variety of different pages for

different features that have variations in the arrangement or display of user interface elements.

That is, as a user navigates an application, there may be major changes in the visual UI as well as

minor changes in the visual UI. For either case, the DAP needs to know what page the user is

looking at to provide the correct smart tip.

[0006] Consequently, a DAP needs to know what page the user is looking at to aid in

understanding visual UI elements on the application that the user is looking at. Conventionally,

identifying pages on a desktop application relies on Automation API Interfaces for different

technologies like SAP-GUI, UIAutomation, Java Access Bridge etc. However, this is a slow

process because uniquely identifying the pages is a memory and CPU intensive task. This makes

the process unusable on minimum configuration machines. Some of the problems with these

approaches include that each technology like WinForm, SAPGui, Java Swings app needs a

different library and algorithm to identify the elements. Additionally, automation APIs are slow

and are CPU intensive so identifying context takes time in every technology.

[0007] The current state of the art for detecting a change in a page or a context of an

application is based on primarily three approaches:

[0008] 1) Window foreground change,

[0009] 2) Window title change, and

[0010] 3) Unique user interface element on the page.

Client No. Page 3 of 40 Attorney Docket No. 10875-10150 US

[0011] These three approaches are achieved through System level and Object level

events generated by the operating system. System-level events describe situations affecting all

applications in the system. Object-level events pertain to situations specific to objects (UI

elements) within one application.

[0012] The events used in the current state of the art to identify a change in context of the

active client application are:

[0013] A. EVENT_SYSTEM_FOREGROUND: In this approach, the event when raised

by the operating system depicts a change in the foreground. The system sends this event even if

the foreground window has changed to another window in the same thread;

[0014] B. EVENT_OBJECT_NAMECHANGE: In this approach, the system sends this

event for the following user interface elements: check box, cursor, list-view control, push button,

radio button, status bar control, tree view control, and window object. This can be used to

determine if there is any change in the title of the current window. This is specifically useful

when there is no change in the foreground but the page within the current window is changed;

and

[0015] C. UIAutomation Element Visibility: This approach looks for an element on the

page using properties which denote a single element on a page. For example, consider looking

for an element with object level properties like Name=Chat and AutomationID=Chat0021 at

regular intervals. When an element with the given properties is found, an assumption can be

made that the current page is a Chat window. Elements that are unique to a particular context of

application are chosen further to identify change of context. Properties such as name, automation

id, control type, etc., of these unique elements are then classified to identify context that is

Client No. Page 4 of 40 Attorney Docket No. 10875-10150 US

required for segmentation, where segmentation is a technique to customize DAP experiences

based on individual or group preferences or needs.

[0016] The above system and object events are usually sufficient when building

applications which are not context aware. Digital adoption platforms like Whatfix DAP rely

heavily on the context of the application to provide relevant and most accurate help content on

the page. Smart Tips, Beacons, Guided Walkthroughs are all built around the context of the

application, so a highly accurate algorithm is an integral part of a DAP solution.

[0017] The above events suffer from the drawback that it’s impractical to achieve a high

accuracy in terms of identifying the context with close to 100% accuracy. There are four basic

challenges.

[0018] First, one obstacle is that most applications do not have reliable titles sufficient to

identify if a context change has happened. Some legacy applications built using WinForms have

a single title throughout all pages. This makes title-based identification of context useless.

[0019] Second, in some customer applications, the applications do not raise any title

change event even when there is a visible change in the title. This usually happens when the

system cannot detect a title change due to the way the application is built by the developers.

[0020] Third, foreground change events are usually the most accurate when it comes to

context change identification when the entire window is changed. But on some customer

applications a foreground change event is triggered when the user hovers over certain UI

elements on a page. Certain UI elements creating a system help text tooltip which is also

considered a new window by the operating system. This triggers an unwanted foreground change

event causing the DAP application to re-check the current page context. This can be partially

Client No. Page 5 of 40 Attorney Docket No. 10875-10150 US

mitigated by various means, including checking the size of the window which raised the

foreground change event.

[0021] Fourth, the UI Automation based approach for looking at certain elements on all

pages at regular intervals has two main issues. One is that it is a CPU intensive operation, so it

can be used judiciously and only when customers have better than average hardware. Second is

that this requires a lot of manual effort by a technical person to identify unique elements on all

required pages. This work cannot be done by the content author as this is a highly technical

work.

[0022] Due to the above four challenges, page context change detection remains a

difficult task with low accuracy.

SUMMARY

[0023] A digital adoption platform includes a page change identification technique. The

page change identification technique is platform and application agnostic. Changes in

screenshots of a UI of an application are compared. In one implementation, differences between

screenshots are compared using a cross-correlation technique. In one implementation, trigger

conditions are defined to reduce the computational resources required.

[0024] An example method of detecting page changes of a graphical user interface (GUI)

application screen includes determining if a trigger condition is satisfied for a page change, the

trigger condition being based on a combination of events associated with a likely page change of

an application. Subsequent to satisfying the trigger condition, a sequence of at least two

screenshots of the application is captured taken at different times, dividing each screenshot into

at least two subsections, and comparing analogous subsections of the at least two screenshots

using a cross correlation function. The method includes identifying a page change in response to

Client No. Page 6 of 40 Attorney Docket No. 10875-10150 US

the cross-correlation function, for at least one subjection, having a value below a threshold value

indicative of a page change.

[0025] In one implementation, the at least two subsections consist of quadrants.

[0026] In one implementation, the method further includes performing a pre-processing

operation to identify blank portions of a screenshot and in response apply at least one rule for

dividing screenshots into at least two subsections.

[0027] In one implementation, the pre-processing operation identifies an order for

processing subsections based at least in part on the blank portions.

[0028] In one implementation, the pre-processing operation applies at least one rule to

improve an accuracy of cross-correlation computations.

[0029] In one implementation, dividing each screenshot into at least two subsections is

selected to improve an accuracy of cross-correlation computations.

[0030] In one implementation, the cross-correlation function is evaluated based on a

reference screenshot captured in response to the trigger condition and a subsequent screenshot.

[0031] In one implementation, the trigger condition comprises operating system events.

[0032] In one implementation, the trigger condition comprises a combination of reorder

events, focus events, mouse events, and keyboard events.

[0033] In one implementation, the trigger condition comprises a first trigger condition

comprising detecting mouse events and keyboard events followed by a second trigger condition

comprising detecting reorder events and focus events.

[0034] In one implementation, the threshold value is in a range between 0.5 to 1.0.

[0035] In one implementation, the method includes performing a stability test, based on

screenshots of the application, to determine if the user interface is stable.

Client No. Page 7 of 40 Attorney Docket No. 10875-10150 US

[0036] In one implementation, the stability test is based on performing a cross-correlation

check for at least two screenshots taken after detecting a change in page content.

[0037] In one implementation, the method includes performing at least one retry if the

cross-correlation function does not have a value below a threshold value indicative of a page

change.

[0038] In one implementation, the sequence of at least two consecutive screenshots is

converted into grayscale images to reduce the number of dimensions for analysis.

[0039] In one implementation, the method includes caching grayscale versions of at least

a first screenshot in the sequence of at least two consecutive screenshots.

[0040] In one implementation, the sequence of at least two consecutive screenshots

comprises screenshots of at least two different color images, with the cross-correlation function

being performed on color images.

[0041] In one implementation, the method includes utilizing the page change

identification information for a digital adoption platform to recognize page changes for which

guidance is provided by the digital adoption platform.

[0042] In one implementation, a system for identifying page changes of a graphical user

interface, includes a page change identification engine configured to determining if a trigger

condition is satisfied for a page change, the trigger condition being based on a combination of

events associated with a likely page change of an application. Subsequent to satisfying the

trigger condition, the method includes capturing a sequence of at least two screenshots of the

application taken at different times, dividing each screenshot into at least two sub-sections, and

comparing analogous subsections of at least two screenshots using a cross correlation function.

Client No. Page 8 of 40 Attorney Docket No. 10875-10150 US

The method includes identifying a page change in response to the cross-correlation function

having a value below a threshold value indicative of a page change.

[0043] In one implementation, the at least two sub-sections consist of quadrants.

BRIEF DESCRIPTION OF THE DRAWINGS

[0044] Fig. 1 is a high-level drawing of a DAP system illustrating components to identify

page changes of an application in accordance with an implementation.

[0045] Fig. 2 is a high-level flowchart of a method to identify page changes of an

application in accordance with an implementation.

[0046] Fig. 3A is high-level flow chart illustrating an example of operating system

events, keyboard events, and mouse events for triggering a page identification process in

accordance with an implementation.

[0047] Fig. 3B illustrates an example of a cross-correlation function in accordance with

an implementation.

[0048] Fig. 4 is an interaction diagram illustrating a process of page identification in

accordance with an implementation.

[0049] Fig. 5A is a flowchart of a method of performing page identification in

accordance with an implementation.

[0050] Fig. 5B is a continuation of the flowchart of Fig. 5A, from line A-A, in

accordance with an implementation.

[0051] Fig. 6 illustrates a first example of an application context, showing an example

user interface in accordance with an implementation.

[0052] Fig. 7 illustrates a second example of an application context, showing an example

user interface in accordance with an implementation.

Client No. Page 9 of 40 Attorney Docket No. 10875-10150 US

[0053] Fig. 8 illustrates a third example of an application context, showing an example

user interface in accordance with an implementation.

[0054] Fig. 9 illustrates a visualization of the difference between UI pages in the first

context of Fig. 6 and the second context of Fig. 7.

[0055] Fig. 10 illustrates a visualization of the difference between UI pages in the first

context of Fig. 6 and the third context of Fig. 8.

[0056] Fig. 11 illustrates an example of a UI page in which the blank area is a majority.

[0057] Fig. 12A illustrates an example of segmentation of the UI page of Fig. 11 into

quadrants to aid in comparing images in accordance with an implementation.

[0058] Fig. 12B illustrates an example of segmentation of the UI page of Fig. 11 into

three segments to aid in comparing images in accordance with an implementation.

[0059] Fig. 12C illustrates an example of segmentation of the UI page of Fig. 11 into six

segments to aid in comparing images in accordance with an implementation.

[0060] Fig. 12D illustrates an example of segmentation of the UI page of Fig. 11 into two

segments to aid in comparing images in accordance with an implementation.

[0061] Figs. 13A and 13B illustrate a general computer environment for deploying the

page identification technique in accordance with an implementation.

DETAILED DESCRIPTION

[0062] Fig. 1 is a block diagram of a high-level implementation of an example of system

for context/page detection for a digital adoption platform 102. The digital adoption platform 102

provides guidance for a target client application 101, which may, for example, be displayed on a

display screen of a desktop computer 100. A target client application 101 running on the desktop

of a client computer 100 generates a graphical user interface (GUI) 102 that may be displayed on

Client No. Page 10 of 40 Attorney Docket No. 10875-10150 US

a computer display screen of the client computer 100. The target client application may, for

example, generate different application display screens (e.g., a calendar screen, a teleconference

screen, etc.). Each of the application screens corresponds to a page of the application. Accurately

identifying a page change/context change of the application that is being displayed on the user’s

computer display screen is important to provide the correct DAP guidance.

[0063] In an exemplary implementation, a digital adoption platform (DAP) 102 requires

page change information to generate smart tips from content providers. The DAP is an additional

software layer to provide help tips for the target client application.

[0064] In one implementation, the DAP 102 includes a DAP player process engine 104

to implement a player process; a Web process manager 106 to implement a Web process; a

native system process engine 108 to implement a native process; and a guided assistance process

engine 110 to implement a guided assistance process.

[0065] In one implementation, a page/context change detection engine 120 is provided.

In one implementation, it includes a screenshot capture unit 122 to capture screenshots of screen

images (or subsections thereof). In one implementation, a screenshot of an image may be resized

and converted into grayscale for further analysis regarding changes to a displayed page. A trigger

condition may be used to determine when an initial screenshot is captured. A configurable time

may be selected for each consecutive subsequent screen capture, with 300 milliseconds being an

exemplary time interval between consecutive screenshots.

[0066] In one implementation, a screen stability unit 124 determines screen stability by

using a stability score based on comparing a sequence of screenshots. For example, if a screen UI

page is still loading, it’s not yet stable. For example, if it takes about 2 seconds for a screen UI

page to load, and if the interval between screenshots is 300 milliseconds, then a number of

Client No. Page 11 of 40 Attorney Docket No. 10875-10150 US

screenshots will be captured before the UI page has finished loading. In one implementation, a

cross-correlation technique is used to evaluate screen stability.

[0067] In one implementation, a screen similarity engine 126 analyzes differences

between screenshots, or in some implementations, subsections thereof. In one implementation, a

cross-correlation technique is used and cross-correlation thresholds are used to identify a

page/context change. In one implementation, the difference between images is measured using a

cross-correlation technique that has a score between -1 and 1, where -1 denotes a complete

change and 1 denotes no change at all.

[0068] For example, a cross correlation technique close to 1, such as a cross correlation

reference value of 0.95, may be used to identify when images are stable. In particular, when a

page has finished loading (or is nearly finished loading), then two consecutive screen images

taken when the page loading is nearly complete will have almost no change, and hence the cross-

correlation value will be close to 1.

[0069] However, a lower cross-correlation value between two images, is useful to

identify when there is a page change where one of the images is a reference screenshot image

taken prior to the page change (e.g., a screenshot taken when a trigger condition is satisfied). For

example, a cross-correlation threshold value of 0.80 to 0.90 in comparison to an initial reference

image may be used to detect a page change.

[0070] In one implementation, a threshold value of the cross-correlation computation of

around 0.8-0.95 is used to define a context change for an application. Cross-correlation scores

below this threshold indicate that there is a context change compared to the previous state of an

application prior to a trigger condition being satisfied. This is an empirically derived range of

threshold values, which may be adjusted for a particular application. This is because for some

Client No. Page 12 of 40 Attorney Docket No. 10875-10150 US

applications, the application's UI and colors are mostly similar for each page (or for many pages)

but may differ slightly in data format or presentation. For a particular application, the cross-

correlation coefficient threshold for each page/context change may be logged under the file and

could be analyzed through it. In one implementation, a cross correlation threshold value is an

incremental change (a delta change value) relative to an average value.

[0071] Performing cross-correlation calculations on grayscale screenshots is

computationally less intensive than for colored images, which is a consideration given that some

end users may have low end computer devices. It should be noted that better correlation score

accuracy can be achieved on color images. It will be understood that the process may be

configurable or otherwise be adapted to the capabilities of a user’s client computer. For higher

end computing devices, the cross-correlation scores may be calculated from color images.

However, the process may calculate cross-correlation scores for grayscale images for low end

client devices. In some implementations, calculating cross-correlation scores on grayscale

images may be the default setting.

[0072] In some instances, a significant portion of a screen may be either blank or

otherwise have very little content that reflects a difference in a screen in a cross-correlation

computation. For some cases, a significant percentage of the UI screen may be sparse or blank in

terms of changeable content. In some implementations, dividing the screen image into

subsections may be used to reduce computational effort and improve the accuracy of cross-

correlation computations. For example, a screen image may be divided into two or more

subsections, with a division of a screen image into four quarters (quadrants) being one example

of this. Rules may be defined for a particular application to identify conditions for dividing the

screen image into subsections is performed. As an illustrative example, consider sectioning a

Client No. Page 13 of 40 Attorney Docket No. 10875-10150 US

screenshot into quarters (i.e., four quadrants of equal area). However, the technique may be

generalized to include dividing a screen image into two or more subsections. A screen subsection

engine 128 is included in one implementation to divide a screen into smaller sub-sections (e.g.,

by rectangular quarter sections as one example).

[0073] In one implementation, a subsection pre-processing unit may identify empty (or

comparatively empty) portions of a UI screen. This may, in some implementations, be based on

image pre-processing to identify what portions of a displayed page are blank or that are

otherwise irrelevant for analyzing differences in images.

[0074] This section pre-processing can be implemented in an application agnostic

manner. However, if additional application information is available, this could also be

considered. For example, if additional information is available on how a particular application

lays out content that might also be considered. For example, some applications are more likely to

have blank sections in particular sections of a page (e.g., top vs. bottom of page; left vs. right

section of page).

[0075] In one implementation, a subsection rules module 132 is provided to implement

rules to determine when to divide a screen into smaller subsections, and rules to process

subsections. For example, a UI screen may be sectioned into two or more subsections (e.g., two,

three, four, six, eight, etc.). The subsections may also be oriented/arranged differently (e.g.,

vertical strip segments vs. horizontal strip segments as one possibility; or a grid array such as a

2x2 into quarter sections or a 3 x3 array into 9 sections as another example). While the sub-

sections may be of equal size, more generally they may be of different size. For example, some

applications may have pages with an uneven distribution of content in the sense that the blank

sections are not symmetrically distributed. For example, some pages may have more of the

Client No. Page 14 of 40 Attorney Docket No. 10875-10150 US

content near the top or the bottom of the page; or more of the content located on the right or the

left side of the page.

[0076] An order for processing subsections and performing cross-correlation

computations on analogous subsections may also be defined. For example, if a screen image is

divided into four quadrants Q1, Q2, Q3, and Q4, the cross-correlation computations may be

performed on in analogous quadrants. For example, if all subsections but one is blank, then only

the one non-blank subsection needs to be used in an image comparison. For example, if the

division is into quadrants, and only one quadrant had content, then the cross-correlation may be

limited to that one quarter of the image.

[0077] In one implementation, an event trigger engine 134 identifies conditions for

triggering computationally expensive image process calculations for identifying page changes.

The trigger conditions may include, for example, keyboard events, mouse events and operating

system events that are indictive of a likely upcoming page change. For a particular operating

system, a table may be defined of a combination of OS events, keyboard events, and mouse

events. An optimal sequence of events may also be considered. For example, in one

implementation, Keyboard and Mouse events are first detected before moving on to listening for

focus and UI reorder events and then deciding to start an image difference algorithm check.

[0078] In one implementation, a screen pixel caching module 136 includes a cache (or

access to a cache) and cache rules to cache screen pixels. For example, after a trigger condition is

satisfied, an initial screenshot image (or a grayscale version thereof) may be cached and used

during a page identification process that may include, for example, a series of comparisons with

a series of consecutive screenshot images. Performing screen pixel caching in a page change

Client No. Page 15 of 40 Attorney Docket No. 10875-10150 US

identification process provides a variety of performance benefits. In one implementation,

grayscale pixels are cached according to cache rules optimized for page change detection.

[0079] Retry logic 138 supports performing retries, such as during a time period when

the screen UI is not stable. For example, a maximum number of retries (e.g., 3, 4, 5, or 6) may be

supported. Alternatively, there may be a maximum time interval during which retries are

permitted. In some implementations, the maximum number of retries is configurable.

[0080] An event listening module 140 may be provided to support the page/context

change detection engine 120. For example, in one implementation, Operating System event

listeners may listen for a Focus change, Keyboard event, Mouse Activities and System UI

elements reorder events.

[0081] In one implementation, a configuration engine 142 is provided for a user or an

administrator to adjust/select configurable parameters. This may include, by way of example, the

number and arrangement of subsections and arrangements of subsection 144, one or more other

subsection rules 146, retry parameters 148, cross-correlation thresholds 150, and may also

include other parameters, such as a timeout value.

[0082] One aspect of the technique for identifying page/context change detection is that

because it relies on analyzing a difference in images it is platform and application technology

independent for desktop applications. Desktop applications are typically built using technologies

like .Net Framework, SAP GUI, JAVA etc. Using an image difference-based algorithm is

platform and application technology independent because detecting differences between images

is not tied to title change event, a foreground change event, or a specific element on the page.

This solution is independent of the application technology on which it is built in and can work on

a wide variety of different desktop applications be it Automation, SAP GUI, JAVA, Citrix or

Client No. Page 16 of 40 Attorney Docket No. 10875-10150 US

Remote desktop compliant because they use system events and because capturing screen shots

and performing image processing of captured screenshot images is technology agnostic.

[0083] In one implementation, when a trigger condition is satisfied, an initial screen shot

image is captured, which is followed by one or more additional screen shot images taken slightly

later in time, where, for example, the time interval between consecutive screenshots may be

selected to be any reasonable number, such as 300 milliseconds, as an illustrative but non-

limiting example. The time interval between consecutive screen shots may, for example, be

based on an empirical understanding of possible minimal time periods after the trigger condition

is satisfied for a page change to occur. There is thus an initial screen shot that is captured along

with at least one subsequent screenshot image that is captured. If a page change occurs, there will

be a difference in screenshot images that can be determined based on whether the cross-

correlation value is less than a first threshold value.

[0084] In one implementation, a stability analysis is performed based on analyzing the

cross-correlation value of later screenshots, relative to a second threshold value. The stability

analysis may be used to determine that screen image is stable (e.g., the page is loaded or nearly

loaded). This provides a number of benefits, including supporting providing DAP guidance when

a page is stably loaded.

[0085] As previously discussed, in one implementation, differences between successive

images are calculated using a cross correlation coefficient. A cross correlation threshold value is

used to decide if there is a change in the page. As some examples, a threshold value of 0.8 to

0.85 may be used, although more generally a wider range of 0.7 to 0.9 might by possible in some

implementations. In one implementation, the threshold value is configurable in the range of 0.5

to 1.0 to provide flexibility in configuring the page change detection process. For example, if

Client No. Page 17 of 40 Attorney Docket No. 10875-10150 US

there is a default range of threshold values in the default range 0.7 to 0.9, the threshold value

may be configurable to improve the accuracy of deciding if there is a change in a page. A default

threshold value of 0.8 to 0/85 is arrived at through multiple experiments. These cross-correlation

threshold values are in an approach in which the cross-correlation values are in the range

between -1.0 (negative 1.0) to 1.0 (Positive 1).

[0086] The cross-correlation threshold value can be adjusted, if necessary, based on

empirical results for particular types of applications, which may vary to the degree different

pages change in content. The trigger events may be selected to include operating system events

that are found in common operating systems and can, if necessary, be adjusted to account for

minor differences in operating system events between different operating systems.

[0087] In one implementation, the trigger for starting the process of a page change

identification algorithm utilizes a combination of OS events Focus change, UI reorder events,

keyboard events and mouse click events.

[0088] In one implementation, a listener is used for a set of OS events such as focus

change and UI reorder events. Reorder or Focus events come up whenever there is a change in

UI. It was observed that this event is received even if the mouse is moved on the screen of the

target application (for e.g., SAP), because it usually displays certain text elements on the screen

at that point. Ordinarily, to switch between pages, mouse clicks or keyboard keys (Enter, Tab,

Esc) are pressed by a user. Therefore, in one implementation, the trigger conditions include

mouse events (e.g., mouse up) and a few keyboard events combined with reorder and focus

events. In one implementation, there is a sequence in which a reorder/focus event is only

considered if a mouse/keyboard event was received earlier. Thus, the trigger condition(s) identify

when a page change is likely to occur. Once the combination of trigger events is received, image

Client No. Page 18 of 40 Attorney Docket No. 10875-10150 US

processing starts, A difference in images is used to identify a page change. The identified page

change, in turn, is eventually used to segment digital guidance content. That is, the page change

is used to aid in determining the DAP guidance provided to an end user (e.g., providing DAP

guidance based on their individual preferences or needs).

[0089] Fig. 2 is a high-level flowchart of a method of page/context change detection in

accordance with an implementation. In block 202, a determination is made if a trigger condition

is satisfied based on a combination of events. In block 204, an initial comparison of screenshot

images may be performed in decision block 204 to determine if an image difference exists. If

there is no difference, a page has not changed (block 206). If there is a difference, a

determination is made in decision block 208 if a change to the UI is in process. If not, then the

process moves to decision block 212. If yes, the process moves to block 210 to wait for the UI to

become stable (e.g., satisfying a stability condition threshold). In block 212 a decision is made

whether the change in the screenshot image is significant, which may be based on a cross-

correlation similarity threshold condition. If not, then the process moves to block 206. If yes, in

block 214 the process identifies that that page/context has changed.

[0090] Fig. 3A illustrates an example of a table for determining a combination of events

that triggers the computationally expensive image processing aspects of the page/context change

detection process. In some implementations, for the Windows operating system, this includes a

combination of focus events, UI reorder events, keyboard events, and mouse events. However,

more generally, other combinations of events could in theory be utilized that are indicative of a

likely page change. To the extent that there are minor differences in the events (or event names)

in different operating systems, the trigger conditions could be adapted for different operating

systems. Thus, it will be understood that the basic technique may be applied to different

Client No. Page 19 of 40 Attorney Docket No. 10875-10150 US

operating systems, including Windows, MAC, Linux operating systems, etc. It will also be

understood that the trigger conditions can be varied from those illustrated.

[0091] In one implementation, the event listener listens for different OS events such as

UI focus change and UI reorder events and when these events occur at a certain predefined

combination as described in the table of Fig. 3A, the page change identification process is

initiated for checking the difference between consecutive screenshots of the application to

identify a context/page change.

[0092] Reorder or Focus events come up whenever there is a change in UI. It was

observed this event is received, even if a user moves a mouse on the screen of the target

application (for e.g., SAP), because it usually displays certain text elements on the screen at that

point. However, greater reliability, in terms of a trigger condition, is achieved by considering a

combination of focus or reorder events and mouse events and keyboard events. This is because

ordinarily to switch between pages, mouse clicks or keyboard keys (e.g., Enter, Tab, Esc) are

pressed by a user. Therefore, better trigger results are achieved by combining mouse events (e.g.,

mouse up) and a few keyboard events with reorder and focus events. In one implementation,

reorder/focus events are listened to only if a mouse/keyboard event was received earlier.

[0093] Once a combination of trigger events is received, image processing is initiated to

determine if there is a difference in images. Fig. 3B illustrates an example of a cross-correlation

formula. However, more generally the cross-correlation performed between screenshot images

(or sections thereof) other well-known cross-correlation equations and optimizations thereof

known in the art.

[0094] Fig. 4 illustrates a process for illustrating the interaction of four systems

corresponding to a Player Process 404, Web Process Manager 406, Native System Process 408,

Client No. Page 20 of 40 Attorney Docket No. 10875-10150 US

and Guided Assistance Process 410 in accordance with an implementation. Each system has its

own set of core responsibilities. The page/context change detection process may be coordinated

across the four systems to identify a page/context change.

[0095] In one implementation, the Player Process 404 is started by the end user. This is

the entry point to start the DAP platform on the user's machine (e.g., on a desktop computer

operating a target client application for which DAP assistance is to be provided).

[0096] In one implementation, a Web Process Manager 406 holds multiple

responsibilities. In one implementation, it retrieves configuration details for an enterprise. In one

implementation, it starts the Native System process 408. In one implementation, it forms the

layer to overlay the DAP product's widgets on a target client application. In one implementation,

it helps in communicating between the Native System process 408 and the Guided Assistance

process 410.

[0097] In one implementation, a Native System Process 408 is responsible for interacting

with target applications and listening to OS events triggered by the application. In one

implementation, it identifies if the application's context has changed or not, deciding further

whether to trigger segmentation or not.

[0098] In one implementation, the Guided Assistance Process 410 receives the message

to trigger segmentation and performs the refresh.

[0099] In one implementation, as illustrated by arrow 421, the Player Process 404 loads

any stored local information and starts the Web process Manager 406.

[0100] In one implementation, as illustrated by in arrow 422, the Web Process Manager

406 retrieves the Enterprise configuration details for the end user's account.

Client No. Page 21 of 40 Attorney Docket No. 10875-10150 US

[0101] In one implementation, as illustrated by arrow 423, the Web Process manager 406

starts the Native System Process 408.

[0102] In one implementation, once the Native System Process 408 is started in arrow

423, it registers in arrow 424-1, the hooks for global events, which includes Foreground,

Keyboard and Mouse events.

[0103] In one implementation, as illustrated by arrow 424-2, as soon as a target

application comes into focus, the Native System Process 408 sends a message to the Web

Process Manager 406 to alert it that the target app is in focus.

[0104] The Web process manager 406 listens to this message and creates an IFrame over

the target application to overlay widgets as indicated b by arrows 425-1 and 425-2, which results

in sending the target application's related configurations to the Native System Process 408.

[0105] In one implementation, the Native System Process 408 receives the target

application’s related configurations, as illustrated by arrow 426 it registers hooks for Reorder and

Focus events that are application specific.

[0106] In one implementation, as illustrated by As illustrated by arrow 427, the Native

System Process 408 loads the image configurations. The received configurations also hold the

values that are required to perform Image processing (other than other configuration details),

which are loaded on the Native System process 408. Some examples of parameters that are

associated with Image processing include the following:

[0107] 1) Coefficient Threshold : Helps to set an upper threshold for a cross-correlation

threshold value to identify context change. An example of a default value is 0.80, although other

values that are higher or lower could be selected, such as 0.50, 0.60, 0.70, 0.90, or 1.0.

Client No. Page 22 of 40 Attorney Docket No. 10875-10150 US

[0108] 2) Image Evaluation Retries : Identifies the number retries to be performed over

an application for identification of a context change. This may vary depending on the type of

application and depending on application's performance. An example for default retries is 6,

although other number of retries could be selected such as 3, 4, or 5.

[0109] 3) Enabled Segmentation Debug Mode: This is useful for engineers in debugging

purposes. It allows saving the images on the machine, to identify and debug the process. In one

implementation, by default, it will be disabled.

[0110] In some implementations, users have the flexibility to configure he values of the

coefficient thresholds for identifying context change the number of retries, etc.

[0111] Once the associated image configuration is loaded, the process builds the initial

cache image, which generates an initial image to compare with. This is necessary for the very

first comparison to take place. In one implementation, as soon as the target application is in

focus, a first screenshot it taken and it becomes a cache image.

[0112] In one implementation , since the events are already hooked, listeners are used to

identify when to process segmentation triggers 428-1. As illustrated in arrow 428-2, steps to

initiate image process to identify if a page is changed are initiated. If the correlation coefficient is

less than the threshold value, the context is known to be changed. If not, the process performs

retries, until they are exhausted, assuming the page is taking time to load. If all the retries are

exhausted, in one implementation the process assumes that page has not changed. Once a process

receives a page that has changed, further consecutive screenshots may be compared to identify if

the page is stable. In one implementation, there is also a timeout value (e.g., 5 minutes but more

generally a configurable time period such as 1 minute, 2 minutes etc.). If the timeout value is

exceeded, a determination is made that the application is in a hung state, and evaluation is

Client No. Page 23 of 40 Attorney Docket No. 10875-10150 US

stopped (to prevent and not go into infinite computations). In one implementation if the cross-

correlation coefficient value is greater than a threshold value, such as 0.95, the process considers

a page to be stable. However, more generally other threshold cross-correlation coefficient values

could be selected that would be consistent with the application being stable enough that there is

little or no additional loading of content on the page.

[0113] Once the page is stable, this aids in confirming that the context has changed. If a

page change is identified, then as illustrated by arrow 429, the Native System Process 408 sends

a message to the Web Process Manager 406 to trigger segmentation (e.g., providing guidance to

an end-user, may include providing guidance based on user preferences or user needs). In one

implementation, as illustrated by arrow 430, the Guided Assistance Process 410 will perform a

refresh to perform segmentation (e.g., provide DAP guidance to a user based on any applicable

user preferences).

[0114] Figs. 5A and 5B illustrate another example of a method in accordance with an

implementation. Referring to Fig. 5A, the process in block 502 listens for Mouse/Keyboard

Events. In block 504, the process checks for mouse/keyboard events. If no Mouse/Keyboard

events are detected, the process moves to block 544 and does nothing. However, if a

Mouse/Keyboard event is received, the process in block 406 keeps track of Reorder/Focus

events.

[0115] In one implementation, if a Mouse/Keyboard event is detected but no

reorder/focus events are further detected, the process moves to block 544 and does nothing.

However, if a Mouse/Keyboard event is detected and a reorder/focus event is detected, the

trigger condition for a combination of events is satisfied, and the process them moves on to

perform image processing steps that are more computationally expensive.

Client No. Page 24 of 40 Attorney Docket No. 10875-10150 US

[0116] In block 510, a screenshot is captured of the foreground window. In block 512,

resizing of the image is performed. There is a possibility that the previous and current screenshot

differ in size. So, to make sure the process does not process the wrong set of data, the current

image is resized, if necessary, based on the previous image.

[0117] In block 514, the image is converted to grayscale, which reduces the number of

variables to check in making an image comparison, which can also be described as reducing the

number of dimensions for analysis. Reducing the number of variables improves speed, which

aids in avoiding the problem of stale data while forming a comparison between images.

Therefore, in one implementation an image is converted into a grayscale image and then further

processing is performed on it.

[0118] In block 518, images are compared to identify differences between images. For

the very first comparison, a screenshot is taken of the screen that appears first for the foreground

window. Therefore, now the process has the data to compare. Both the images are in the form of

grayscale, and a comparison is performed for the data for each pixel to get a cross-correlation

coefficient.

[0119] If the cross-correlational coefficient is not less than a defined threshold, the

process in block 522 determines if there are retries left to perform the same steps again. For

example, a pre-selected maximum number of retries may be configured.

[0120] If all the retries are exhausted, the process will end and do nothing, moving on to

block 544.

[0121] In block 520, if the cross-correlational coefficient value is less than a defined

upper threshold, the process proceeds further to block 550.

[0122] The process continues in Fig. 5B at line A-A.

Client No. Page 25 of 40 Attorney Docket No. 10875-10150 US

[0123] In one implementation, if the difference between two images is found, the process

waits for the page to become stable (e.g., no longer loading elements). In one implementation, to

figure out stability, in block 550, the process keeps on taking screenshots and compares them

with the consecutive ones, to get a high correlation coefficient (e.g., greater than 0.95).

[0124] In decision block 552, if the cross-correlation coefficient is greater than 0.95, the

page is considered to be stable. In block 554, the cache image and grayscale matrix are updated.

[0125] If not, the process performs the same steps until the process receives a timeout in

decision block 558.

[0126] If the process reaches a timeout limit, this means that the application is hung and

something is wrong. Therefore, the process ends in block 560.

[0127] After a page is stable, a determination can be made that the context has changed.

The previous image, which is cache image, is updated with the current one. This will aid in

subsequent comparisons to identify context change. Since the page context change is identified,

segmentation is triggered in block 556, where the segmentation is part of the process of

providing DAP guidance to a user.

 Use of Subsections
[0128] As previously discussed, in one implementation the screenshot is divided into

subsections, such as quadrants. Cross-correlation comparisons may be performed on specific

subsections of the screenshot. This implementation is particularly beneficial for the case that a

large portion of a screenshot is blank. In performing an image difference algorithm, the

screenshot of the application is taken and compared with the cached image which was taken at

the trigger point of the algorithm as described in the previous section. The image comparison

happens in the following ways:

Client No. Page 26 of 40 Attorney Docket No. 10875-10150 US

[0129] 1) Full image comparison in which the process compares the full screenshot of the

application with the previous and the next screenshots.

[0130] 2) Sectional image comparison in which the image is divided into subsections and

then each subsection is compared with the exact same subsection in the next image. For example,

if the screenshot is divided into four quadrants Q1, Q2, Q3, and Q4, then quadrant Q1 in a first

image is compared with quadrant Q1 in a second image, and so on. Dividing a screenshot into

subsections may be necessary to achieve a high degree of accuracy in the page change

identification when the application is maximized. This is because maximizing an application

increases the likelihood a page has less content to show and that most of the area is blank. In

theory each and every subsection could be evaluated. However, in some implementations, the

sectional image comparison includes performing a pre-processing operation to identify regions

of the full image that are blank or otherwise irrelevant. Alternatively, a pre-processing operation

could identify potential opportunities to improve the accuracy of cross-correlation computations

as a pre-condition to dividing an image into sectioning. In any case, once a single subsection is

demonstrated by cross-correlation computation to indicate a page change, the other subsections

do not need to be evaluated.

[0131] 3) Additionally, another possible option would be to perform a full image

comparison and then do a sectional image comparison for greater accuracy. For example, if the

full image comparison generated a cross-correlation value that was marginal, in regard to having

a cross correlation value indicative of a context change, an additional sectional image

comparison could be done. That is, a sectional image comparison could be performed when one

or more factors suggests a risk of a false negative result of the full image cross-correlation

computation.

Client No. Page 27 of 40 Attorney Docket No. 10875-10150 US

[0132] When a page has a large percentage of blank regions this increases the likelihood

of false negatives when a cross-correlation function is computing. Dividing the image into

subsections improves accuracy for the cross-correlation computations, particularly under some

scenarios, such as when the application is maximized or if the application itself includes pages

that are largely blank. This way, the process can accurately identify changes even if there are too

many white spaced regions in the page as a whole.

[0133] Note that a page change has to be only detected in one subsection (e.g., one

quarter).

[0134] Some aspects of cross-correlation and subsections will now be illustrated with

some example UI pages. Fig. 6 illustrates a first example of an application context, in which a

screenshot 610 of a UI page for Bluetooth & devices.

[0135] Fig. 7 illustrates a second example of an application context, in which a

screenshot 710 is of a UI page.

[0136] Fig. 8 illustrates a third example of an application context, in which a screenshot

810 is of a UI page.

[0137] Fig. 9 is a visualization of differences 905 between the pages in the first context

of Fig. 6 and the second context of Fig. 7 to indicate visually aspects of performing a cross-

correlation comparison. As the left-side of each page is nearly identical, there is almost no

difference in that section of the screenshot. However, there is still substantial change between

Fig. 6 and Fig. 7.

[0138] Fig. 10 is a visualization of differences 1002 between the pages in the first context

of Fig. 6 and the third context of Fig. 8. Fig. 6 and Fig. 8 are nearly identical. As such, only a

small portion of the screen differs. One aspect illustrated by Fig. 10 is that the cross-correlation

Client No. Page 28 of 40 Attorney Docket No. 10875-10150 US

threshold may be selected to identify differences in pages that approximate the smallest

difference that the typical human user would be aware of. As seen in the figures, the blank area is

in the majority. While comparing images, the cross-correlation output can give a false negative

when there is a large fraction of blank area in an image. So, dividing the image into multiple

quadrants isolates the difference computation. Once a page change has been identified in one

subsection (e.g., one quarter), there is no need to perform a comparison analysis on the

remaining subsections.

[0139] Fig. 11 illustrates an example of screenshot of a UI page in which the blank area

is in the majority. This has the downside that the cross-correlation calculation performed on the

entire page is less reliable, potentially giving a false negative. There are various ways that it

could be determined that much of the page is blank. For example, this could be detected by

performing a preliminary image analysis to identify blank sections of a page. Alternatively, in

some cases, other information may be available about a page to indicate that it is a type of page

in which much of the page is blank.

[0140] Fig. 12 illustrates a screenshot of the page of Fig. 11 but divided into smaller

subsections. In this example, the screen image is divided into quarter sections (Q1, Q2, Q3, and

Q4). This permits the difference computation to be isolated to the subsection that is not blank

(Q1) resulting in a more accurate difference computation. As previously discussed, while

dividing into quadrants is one option, more generally the number and arrangement of subsections

could include at least two subsections, as the objective of segmentation is to identify page

differences with greater accuracy.

[0141] Memoization

Client No. Page 29 of 40 Attorney Docket No. 10875-10150 US

[0142] The capturing of images of UI pages is a resource heavy process. It was observed

in one test by the inventors that consumption of CPU utilization increases during the evaluation

process up to 50%. To reduce CPU usage a memoization process was developed to cache the

previous evaluated pixels in the memory.

[0143] In one implementation, gray-scale pixels at full and quadrant level are cached, as

they are the basic origin for evaluation purposes. (Note that if other sub-sectioning schemes

besides quadrants are used, pixels may be cached at the level of the sub-sectioning (e.g., one half

of the pixels of a page for a page divided into two subsections).

[0144] In one implementation, as soon as the target active window appears, the first

screenshot is taken. Then the process of building a cache begins. Pixels are converted into

grayscale for full screen images and for quadrants and they are cached. The screen's width and

height may also be cached as a variable. When the next screenshot is taken, the process does not

have to calculate the previous image's pixels, because the cache can be used.

[0145] When a page/context change is identified as having occurred, the cache is updated

with the then pixel values. This means that for the the next comparison the process does not have

to re-evaluate the pixel values.

[0146] Note that if the active window has been resized, the previously built cache won't

be the relevant candidate to be taken up for further computations. To verify if the window has

been resized, the new active window's width and height are compared with that of the cached

one. For the case that the active window was resized, the process updates the cache with resized

window image's pixels.

[0147] Empirically this resulted in a significant decrease in the number of computations

done, as well as supporting the offloading resources.

Client No. Page 30 of 40 Attorney Docket No. 10875-10150 US

[0148] As previously discussed, the page/context change detection engine 120 includes a

screen pixel caching unit 120. The screen pixel caching unit 120 may be designed to build an

initial cache for processing the computations. It may also be designed to identify if the cache

needs to be re-built, and whether the cache needs to be updated. It may be designed to get pixels

in grayscale and cache them. It may also be designed to identify that a window has been resized.

In one implementation, the screen pixel caching unit is designed to cache both full and

subsection-level pixels (e.g., quadrant level pixels)

[0149] The page change identification engine 120 may be implemented as software

instructions. It may, for example, be implemented to operate with other software on a user’s

desktop. Referring to Fig. 13A, the software instructions may be stored on a user’s computer,

which may in turn have conventional hardware components such as a memory 1310, data store

1320, output device 1314 (e.g., a display screen), communication bus 1302, an input device

1312, a processor 1308, and a communication unit 1304 to communicate with a computer

network, such as a LAN, WAN, the internet, etc.

[0150] In some instances, various implementations may be presented herein in terms of

algorithms and symbolic representations of operations on data bits within a computer memory.

An algorithm is here, and generally, conceived to be a self-consistent set of operations leading to

a desired result. The operations are those requiring physical manipulations of physical quantities.

Usually, though not necessarily, these quantities take the form of electrical or magnetic signals

capable of being stored, transferred, combined, compared, and otherwise manipulated. It has

proven convenient at times, principally for reasons of common usage, to refer to these signals as

bits, values, elements, symbols, characters, terms, numbers, or the like New, Upload, Sync, and

Open in One Drive.

Client No. Page 31 of 40 Attorney Docket No. 10875-10150 US

[0151] To ease description, some elements of the system and/or the methods are referred

to using the labels first, second, third, etc. These labels are intended to help to distinguish the

elements but do not necessarily imply any particular order or ranking unless indicated otherwise.

[0152] It should be borne in mind, however, that all of these and similar terms are to be

associated with the appropriate physical quantities and are merely convenient labels applied to

these quantities. Unless specifically stated otherwise as apparent from the following discussion,

it is appreciated that throughout this disclosure, discussions utilizing terms including

"processing," "computing," "calculating," "determining," "displaying," or the like, refer to the

action and processes of a computer system, or similar electronic computing device, that

manipulates and transforms data represented as physical (electronic) quantities within the

computer system's registers and memories into other data similarly represented as physical

quantities within the computer system memories or registers or other such information storage,

transmission or display devices.

[0153] Various implementations described herein may relate to an apparatus for

performing the operations herein. This apparatus may be specially constructed for the required

purposes, or it may comprise a general-purpose computer selectively activated or reconfigured

by a computer program stored in the computer. Such a computer program may be stored in a

computer readable storage medium, including, but is not limited to, any type of disk including

floppy disks, optical disks, CD ROMs, and magnetic disks, read-only memories (ROMs),

random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, flash

memories including USB keys with non-volatile memory or any type of media suitable for

storing electronic instructions, each coupled to a computer system bus.

Client No. Page 32 of 40 Attorney Docket No. 10875-10150 US

[0154] The technology described herein can take the form of an entirely hardware

implementation, an entirely software implementation, or implementations containing both

hardware and software elements. For instance, the technology may be implemented in software,

which includes, but is not limited to, firmware, resident software, microcode, etc. Furthermore,

the technology can take the form of a computer program object accessible from a computer-

usable or computer-readable medium providing program code for use by or in connection with a

computer or any instruction execution system. For the purposes of this description, a computer-

usable or computer readable medium can be any non-transitory storage apparatus that can

contain, store, communicate, propagate, or transport the program for use by or in connection with

the instruction execution system, apparatus, or device.

[0155] A data processing system suitable for storing and/or executing program code may

include at least one processor coupled directly or indirectly to memory elements through a

system bus. The memory elements can include local memory employed during actual execution

of the program code, bulk storage, and cache memories that provide temporary storage of at least

some program code in order to reduce the number of times code must be retrieved from bulk

storage during execution. Input or I/O devices (including, but not limited to, keyboards, displays,

pointing devices, etc.) can be coupled to the system either directly or through intervening I/O

controllers.

[0156] Network adapters may also be coupled to the system to enable the data processing

system to become coupled to other data processing systems, storage devices, remote printers,

etc., through intervening private and/or public networks. Wireless (e.g., Wi-FiTM) transceivers,

Ethernet adapters, and Modems, are just a few examples of network adapters. The private and

public networks may have any number of configurations and/or topologies. Data may be

Client No. Page 33 of 40 Attorney Docket No. 10875-10150 US

transmitted between these devices via the networks using a variety of different communication

protocols including, for example, various Internet layer, transport layer, or application layer

protocols. For example, data may be transmitted via the networks using transmission control

protocol / Internet protocol (TCP/IP), user datagram protocol (UDP), transmission control

protocol (TCP), hypertext transfer protocol (HTTP), secure hypertext transfer protocol (HTTPS),

dynamic adaptive streaming over HTTP (DASH), real-time streaming protocol (RTSP), real-time

transport protocol (RTP) and the real-time transport control protocol (RTCP), voice over Internet

protocol (VOIP), file transfer protocol (FTP), WebSocket (WS), wireless access protocol

(WAP), various messaging protocols (SMS, MMS, XMS, IMAP, SMTP, POP, WebDAV, etc.),

or other known protocols.

[0157] Finally, the structure, algorithms, and/or interfaces presented herein are not

inherently related to any particular computer or other apparatus. Various general-purpose

systems may be used with programs in accordance with the teachings herein, or it may prove

convenient to construct more specialized apparatus to perform the required method blocks. The

required structure for a variety of these systems will appear from the description above. In

addition, the specification is not described with reference to any particular programming

language. It will be appreciated that a variety of programming languages may be used to

implement the teachings of the specification as described herein.

[0158] The foregoing description has been presented for the purposes of illustration and

description. It is not intended to be exhaustive or to limit the specification to the precise form

disclosed. Many modifications and variations are possible in light of the above teaching. As will

be understood by those familiar with the art, the specification may be embodied in other specific

forms without departing from the spirit or essential characteristics thereof. Likewise, the

Client No. Page 34 of 40 Attorney Docket No. 10875-10150 US

particular naming and division of the modules, routines, features, attributes, methodologies, and

other aspects are not mandatory or significant, and the mechanisms that implement the

specification or its features may have different names, divisions and/or formats.

[0159] Furthermore, the modules, routines, features, attributes, methodologies, and other

aspects of the disclosure can be implemented as software, hardware, firmware, or any

combination of the foregoing. Also, wherever a component, an example of which is a module, of

the specification is implemented as software, the component can be implemented as a standalone

program, as part of a larger program, as a plurality of separate programs, as a statically or

dynamically linked library, as a kernel loadable module, as a device driver, and/or in every and

any other way known now or in the future. Additionally, the disclosure is in no way limited to

implementation in any specific programming language, or for any specific operating system or

environment.

Client No. Page 35 of 40 Attorney Docket No. 10875-10150 US

WHAT IS CLAIMED IS:

1. A computer-implemented method of detecting page changes of a graphical user

interface (GUI) application screen, comprising:

determining if a trigger condition is satisfied for a page change, the trigger condition

being based on a combination of events associated with a likely page change of an application;

subsequent to satisfying the trigger condition, capturing a sequence of at least two

screenshots of the application taken at different times, dividing each screenshot into at least two

subsections, and comparing analogous subsections of the at least two screenshots using a cross

correlation function; and

identifying a page change in response to the cross-correlation function, for at least one

subjection, having a value below a threshold value indicative of a page change.

2. The computer-implemented method of claim 1, where the at least two subsections consist

of quadrants.

3. The computer-implemented method of claim 1, further comprising performing a pre-

processing operation to identify blank portions of a screenshot and in response apply at

least one rule for dividing screenshots into at least two subsections.

4. The computer-implemented method of claim 3, wherein the pre-processing operation

identifies an order for processing subsections based at least in part on the blank portions.

Client No. Page 36 of 40 Attorney Docket No. 10875-10150 US

5. The computer-implemented method of claim 3, wherein the pre-processing operation

applies at least one rule to improve an accuracy of cross-correlation computations.

6. The computer-implementation method of claim 1, wherein dividing each screenshot into

at least two subsections is selected to improve an accuracy of cross-correlation

computations.

7. The computer-implemented method of claim 1, wherein the cross-correlation function is

evaluated based on a reference screenshot captured in response to the trigger condition

and a subsequent screenshot.

8. The computer-implemented method of claim 1, wherein the trigger condition comprises

operating system events.

9. The computer-implemented method of claim 1, wherein the trigger condition comprises a

combination of reorder events, focus events, mouse events, and keyboard events.

10. The computer-implemented method of claim 1, wherein the trigger condition comprises a

first trigger condition comprising detecting mouse events and keyboard events followed

by a second trigger condition comprising detecting reorder events and focus events.

11. The computer-implemented method of claim 1, wherein the threshold value is in a range

between 0.5 to 1.0.

12. The computer-implemented method of claim 1, further comprising performing a stability

test, based on screenshots of the application, to determine if the user interface is stable.

Client No. Page 37 of 40 Attorney Docket No. 10875-10150 US

13.The computer-implemented method of claim 12, wherein the stability test is based on

performing a cross-correlation check for at least two screenshots taken after detecting a

change in page content.

14. The computer-implemented method of claim 1, further comprising performing at least

one retry if the cross-correlation function does not have a value below a threshold value

indicative of a page change.

15. The computer-implemented method of claim 1, wherein the sequence of at least two

consecutive screenshots is converted into grayscale images to reduce the number of

dimensions for analysis.

16. The computer-implemented method of claim 15, further comprising caching grayscale

versions of at least a first screenshot in the sequence of at least two consecutive

screenshots.

17. The computer-implemented method of claim 1, wherein the sequence of at least two

consecutive screenshots comprises screenshots of at least two different color images, with

the cross-correlation function being performed on color images.

18. The computer-implemented method of claim 1, further comprising utilizing the page

change identification information for a digital adoption platform to recognize page

changes for which guidance is provided by the digital adoption platform.

19. A system for identifying page changes of a graphical user interface, comprising:

Client No. Page 38 of 40 Attorney Docket No. 10875-10150 US

a page change identification engine configured to determining if a trigger condition is

satisfied for a page change, the trigger condition being based on a combination of events

associated with a likely page change of an application;

subsequent to satisfying the trigger condition, capturing a sequence of at least two

screenshots of the application taken at different times, dividing each screenshot into at least two

sub-sections, and comparing analogous subsections of at least two screenshots using a cross

correlation function; and

identifying a page change in response to the cross-correlation function having a value

below a threshold value indicative of a page change.

20. The system of claim 19, wherein the at least two sub-sections consist of quadrants.

21. A computer-implemented method of detecting page changes of a graphical user interface

(GUI) application screen, comprising:

determining if a trigger condition is satisfied for a page change, the trigger condition

being based on a combination of events associated with a likely page change of an application;

subsequent to satisfying the trigger condition, capturing a sequence of at least two

screenshots of the application taken at different times, dividing each screenshot into quadrants,

and comparing analogous quadrants of the at least two screenshots using a cross correlation

function;

Client No. Page 39 of 40 Attorney Docket No. 10875-10150 US

identifying a page change in response to the cross-correlation function having a value

below a first threshold value indicative of a page change;

evaluating page stability using a stability score; and

in response to identifying a page change and that the page is stable, identifying a page

change for a digital adoption platform.

Client No. Page 40 of 40 Attorney Docket No. 10875-10150 US

ABSTRACT

 A digital adoption platform includes a page change identification technique. The page change

identification technique is platform and application agnostic. Changes in screenshots of a UI of

an application are compared. Differences between screenshots are compared using a cross-

correlation technique. Trigger conditions are defined to reduce the computational resources

required. Additional optimizations to reduce processing resources and optimize accuracy may

also be included.

10875-10150 US
Sheet 1 of 17

Fig. 1

Application
GUI 102

Target
Client

Application
101

100

Page/Context Change Detection 120

Web Process Manager 106

Native System Process Engine 108

Guided Assistance Process Engine 110

Screenshot Capture and
Initial Image Processing

(e.g., resize and grayscale
conversion) 122

Screen Similarity/Difference (e.g.,
Cross-Correlation Measure) 126

Event Trigger
Engine 134

DAP Player Process Engine 104

Screen Subsection Engine
128

Screen Pixel Caching
136

Screen Stability 124

Digital Adoption Platform 102

Configuration Engine 142Retry Logic 138

Retry Parameters 148

Cross-Correlation Threshold(s)
150

Number of Subsections and
Arrangement of Subsections

144

Subsection Pre-Processing
(e.g., Empty Segment

Detection) 130

Subsection Rules 132

Other Subsection Rules 146

Event Listening/
Coordination 140

10875-10150 US
Sheet 2 of 17

Fig. 2

Determine From a Comparison of Images of the UI
 If Anyting Changed in The UI

204

Is UI Change in Progress
208

Wait For UI to Become Stable (e.g., Stability Condition
Threshold) 210

Trigger Condition Satisfied (e.g., OS Events, Keyboard
Events, And Mouse Events) 202

Determine if Change To Image Is Significant (e.g., Cross-
Correlation Threshold Condition)

212

Identify Page Content/Context Has Changed 214

Page Has Not
Changed 206

Yes

Yes

No

No

Yes

No

10875-10150 US
Sheet 3 of 17

Fig. 3A

Fig. 3B

10875-10150 US
Sheet 4 of 17

Fi
g.

 4

Pl
ay

er
 P

ro
ce

ss
 4

04
W

eb
 P

ro
ce

ss
 M

an
ag

er

40
6

N
at

iv
e

Sy
st

em

Pr
oc

es
s

40
8

G
ui

de
d

As
si

st
an

ce

Pr
oc

es
s

41
0

tri
gg

er
R

ef
es

h(
)

tri
gg

er
Se

gm
en

ta
tio

nE
ve

nt
()

Pe

rfo
rm

R

ef
es

h

St
ar

t
Pl

ay
er

C
re

at
e

an
d

Sh
ow

Ap

pl
ic

at
io

n
Fr

am
e

lo
ad

im
ag

eC
on

fig
ur

at
io

n(
)

pr
oc

es
sS

eg
m

en
ta

tio
nT

rig
ge

r()

ge
tE

nt
er

pr
is

eC
on

fig
ur

at
io

ns
()

in
itA

nd
St

ar
t()

W
eb

 p
ro

ce
ss

 P
in

g
ac

tiv
e

w
in

do
w

 d
et

ai
ls

st
ar

tN
at

iv
eS

ys
te

m
Pr

oc
es

s(
)

Ta
rg

et
 A

pp
 in

 fo
cu

slis
te

ne
r

R
et

rie
s

N
o

is
Pa

ge
St

ab
le

()

Ye
s

is
Pa

ge
C

ha
ng

ed
()

in
iti

m
ag

eP
ro

ce
ss

in
gT

o
Id

en
ify

Pa
ge

C
ha

ng
e(

)

at
ta

ch
R

eo
rd

er
Li

st
en

er
()

At
ta

ch
Fo

cu
sL

is
te

ne
r()

 at
ta

ch
Fo

re
gr

ou
nd

Ev
en

tL
is

te
ne

r()
at

ta
ch

M
ou

se
Li

st
en

er
()

at
ta

ch
Ke

yb
oa

rd
Li

st
en

er
()

42
1

42
2

42
3

42
4-

1

42
4-

2

42
5-

1

42
5-

2
42

6 42
7

42
8-

1

42
8-

2

42
9

43
0

43
1

10875-10150 US
Sheet 5 of 17

Fig. 5A
A A

Mouseup/Keyboard
Event 502

Do Nothing 522 Event Received 504

Reorder/Focus Event
506

Event Received 508

Capture Screenshot 510

Resize Image 512

Convert to Grayscale 514

Compare Images to Identify
Difference 516

Coefficient Value <Threshold
(detect screen difference)

518

Retries Left 520

Yes

No

10875-10150 US
Sheet 6 of 17

Fig. 5B

Compare Images to Identify Similarity
530

Coefficient Value > 0.95
532

(detect stability)

Update Cache Image and
Grayscale Matrix 534

Trigger Segmentation 536

Timeout 538

Return, application is hung
540

No

No

Yes Yes

A A

10875-10150 US
Sheet 7 of 17

Fi
g.

 6

60
5

61
0

10875-10150 US
Sheet 8 of 17

Fi
g.

 7

60
5

71
0

10875-10150 US
Sheet 9 of 17

Fi
g.

 8

60
5

81
0

10875-10150 US
Sheet 10 of 17

Fi
g.

 9
90

2

10875-10150 US
Sheet 11 of 17

Fi
g.

 1
0

10
02

10875-10150 US
Sheet 12 of 17

Fi
g.

 1
1

10875-10150 US
Sheet 13 of 17

Fi
g.

 1
2A

10875-10150 US
Sheet 14 of 17

Fi
g.

 1
2B

S1 S2 S3

10875-10150 US
Sheet 15 of 17

Fi
g.

 1
2C

S1
S2

S3
S4

S5
S6

10875-10150 US
Sheet 16 of 17

Fi
g.

 1
2D

S1
S2

10875-10150 US
Sheet 17 of 17

Figure 13B

1302

Processor
13108

Communication Unit
1304

Data Store
1320

Input Device
1312

Output Device
1314

Memory
1310

Figure 13A

PTO/ (06-12)
Approved for use through /3 /20 . OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN
APPLICATION DATA SHEET (37 CFR 1.76)

Title of
Invention

As the below named inventor, I hereby declare that:

This declaration
is directed to: The attached application, or

United States application or PCT international application number ____________________

filed on ________________________________

The above-identified application was made or authorized to be made by me.

I believe that I am the original inventor or an original joint inventor of a claimed invention in the application.

I hereby acknowledge that any willful false statement made in this declaration is punishable under 18 U.S.C. 1001
by fine or imprisonment of not more than (5) years, or both.

WARNING:
Petitioner/applicant is cautioned to avoid submitting personal information in documents filed in a patent application that may
contribute to identity theft. Personal information such as social security numbers, bank account numbers, or credit card numbers
(other than a check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the USPTO
to support a petition or an application. If this type of personal information is included in documents submitted to the USPTO,
petitioners/applicants should consider redacting such personal information from the documents before submitting them to the
USPTO. Petitioner/applicant is advised that the record of a patent application is available to the public after publication of the
application (unless a non-publication request in compliance with 37 CFR 1.213(a) is made in the application) or issuance of a
patent. Furthermore, the record from an abandoned application may also be available to the public if the application is
referenced in a published application or an issued patent (see 37 CFR 1.14). Checks and credit card authorization forms
PTO-2038 submitted for payment purposes are not retained in the application file and therefore are not publicly available.

LEGAL NAME OF INVENTOR

Inventor: ___ Date (Optional) :_______________________

Signature: __

Note: An application data sheet (PTO/SB/14 or equivalent), including naming the entire inventive entity, must accompany this form
. Use an additional PTO/A form for each additional inventor.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

SYSTEM AND METHOD FOR DETECTING A CHANGE IN CONTEXT OF AN
APPLICATION USING SUBSECTIONS

Sneha Saxena

/ /

PTO/ (06-12)
Approved for use through /3 /20 . OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN
APPLICATION DATA SHEET (37 CFR 1.76)

Title of
Invention

As the below named inventor, I hereby declare that:

This declaration
is directed to: The attached application, or

United States application or PCT international application number ____________________

filed on ________________________________

The above-identified application was made or authorized to be made by me.

I believe that I am the original inventor or an original joint inventor of a claimed invention in the application.

I hereby acknowledge that any willful false statement made in this declaration is punishable under 18 U.S.C. 1001
by fine or imprisonment of not more than (5) years, or both.

WARNING:
Petitioner/applicant is cautioned to avoid submitting personal information in documents filed in a patent application that may
contribute to identity theft. Personal information such as social security numbers, bank account numbers, or credit card numbers
(other than a check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the USPTO
to support a petition or an application. If this type of personal information is included in documents submitted to the USPTO,
petitioners/applicants should consider redacting such personal information from the documents before submitting them to the
USPTO. Petitioner/applicant is advised that the record of a patent application is available to the public after publication of the
application (unless a non-publication request in compliance with 37 CFR 1.213(a) is made in the application) or issuance of a
patent. Furthermore, the record from an abandoned application may also be available to the public if the application is
referenced in a published application or an issued patent (see 37 CFR 1.14). Checks and credit card authorization forms
PTO-2038 submitted for payment purposes are not retained in the application file and therefore are not publicly available.

LEGAL NAME OF INVENTOR

Inventor: ___ Date (Optional) :_______________________

Signature: __

Note: An application data sheet (PTO/SB/14 or equivalent), including naming the entire inventive entity, must accompany this form
. Use an additional PTO/A form for each additional inventor.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

SYSTEM AND METHOD FOR DETECTING A CHANGE IN CONTEXT OF AN
APPLICATION USING SUBSECTIONS

Muthukrishnan Thukkaram

/ /

Sneha Saxena

SYSTEM AND METHOD FOR DETECTING A CHANGE IN CONTEXT OF
AN APPLICATION USING SUBSECTIONS

10875-10150 US

/Edward Van Gieson/
Edward Van Gieson 44,386

Attorney of Record

Whatfix Private Limited

✔

93219

✔

WHATFIX PRIVATE LIMITED

✔

/ /

Khadim Hussain Ismail Batti

CEO

